A surface-tethered model to assess size-specific effects of hyaluronan (HA) on endothelial cells.

نویسندگان

  • Samir Ibrahim
  • Binata Joddar
  • Matthew Craps
  • Anand Ramamurthi
چکیده

Crosslinked gels (hylans) containing long-chain (MW>1 x 10(6)Da) hyaluronan (HA), a connective tissue GAG, show exceptional biocompatibility for vascular implantation but poorly interact with vascular endothelial cells (ECs). Previous studies showed in situ fragmentation of HA by UV light to bioactivate hylan gels and elicit enhanced EC responses. Since fragmented HA can be pro-inflammatory, it is important to define an optimal size distribution of HA fragments on the hylan surface that will recruit and support normally functional ECs and limit ulterior responses. Related studies have shown that exogenous models of HA do not necessarily replicate cell responses to HA scaffolds. Since scaffolds cannot be created based on fragmented HA alone, we sought to determine size-specific responses of ECs to HA substrates of defined fragment sizes by creation of HA-tethered culture surfaces. HA (1000, 200, 20 kDa) and an oligomer mixture were tethered onto an aminosilane (APTMS)-treated glass surfaces using a carbodiimide reaction. MALDI-TOF showed the HA digests to contain HA 4-8mers with a 75+/-0.4% w/w of 4mers. Immuno-fluorescence, SEM, AFM and XPS analysis revealed homogeneous amine and HA surfaces. An amine s-SDTB assay and HA fluorophore-assisted carbohydrate electrophoresis (FACE) indicated surface densities of 9+/-3 amine groups/nm(2) and 0.57+/-0.44 microg/cm(2), respectively. HA/HA fragments/oligomers were stable over 21 days of incubation in serum-free culture media. EC proliferation on these surfaces resulted was limited, a possible effect of smooth surface topography, high anionicity, and in case of 4mers, non-interaction with primary HA cell-surface receptors (CD44). This work is significant in that it allows testing of cell responses to substrates composed of single-sized fragments of HA that cannot by themselves be cross-linked into a gel. Future work in our lab will use this model to assess the effects of other HA oligomer sizes on EC behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential binding of hyaluronan on the surface of tissue-specific endothelial cell lines.

Tissue-specific heterogeneity of endothelial cells, both structural and functional, plays a crucial role in physiologic as well as pathologic processes, including inflammation, autoimmune diseases and tumor metastasis. This heterogeneity primarily results from the differential expression of adhesion molecules that are involved in the interactions between endothelium and circulating immune cells...

متن کامل

Hyaluronan on the surface of tumor cells is correlated with metastatic behavior.

In the present study, we examined the metastatic potential of tumor cells expressing different levels of cell surface hyaluronan. We used flow cytometry to isolate subsets of the B16-F1 mouse melanoma cell line that expressed either high (HA-H) or low (HA-L) amounts of hyaluronan on their surfaces. These two subsets of cells showed a 32-fold difference in the amount of cell surface hyaluronan, ...

متن کامل

Effect of Co-presentation of Adhesive Ligands and Short Hyaluronan on Lymphendothelial Cells

Controlled activation of lymphangiogenesis through functional biomaterials represents a promising approach to support wound healing after surgical procedures, yet remains a challenge. In a synthetic biological approach, we therefore set out to mimic the basal microenvironment of human primary dermal lymphatic endothelial cells (LECs) during lymphangiogenesis. As the extracellular matrix compone...

متن کامل

Low Molecular Weight Hyaluronan Induces Lymphangiogenesis through LYVE-1-Mediated Signaling Pathways

Hyaluronan (HA), a large nonsulfated glycosaminogycan in the extracellular matrix, whose degraded fragments termed as low molecular weight hyaluronan (LMW-HA), has been reported as an important regulator of angiogenesis. However, little is known about the influence of LMW-HA on lymphangiogenesis. In this study, we try to explore the in vitro effects of LMW-HA on lymphangiogenesis and identify t...

متن کامل

Regulation of Hyaluronan Synthesis in Vascular Diseases and Diabetes

Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs) dedifferentiation which c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2007